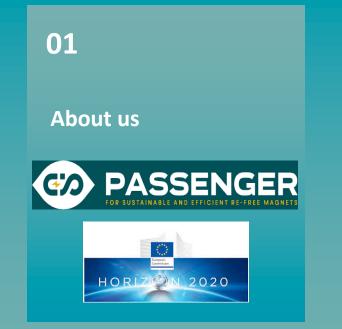


NOVEMBER 2021

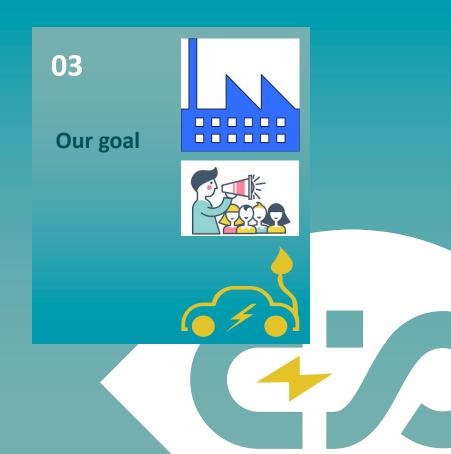
PASSENGER

Pilot Action for Securing a Sustainable European Next Generation of Efficient RE-free magnets

EUROPEAN COUNTRIES


Duration: 2021 – 2025

Prof. Dr. Alberto Bollero – IMDEA Nanoscience



Content preview

Programme:

Horizon 2020 Framework Programme

Work programme part:

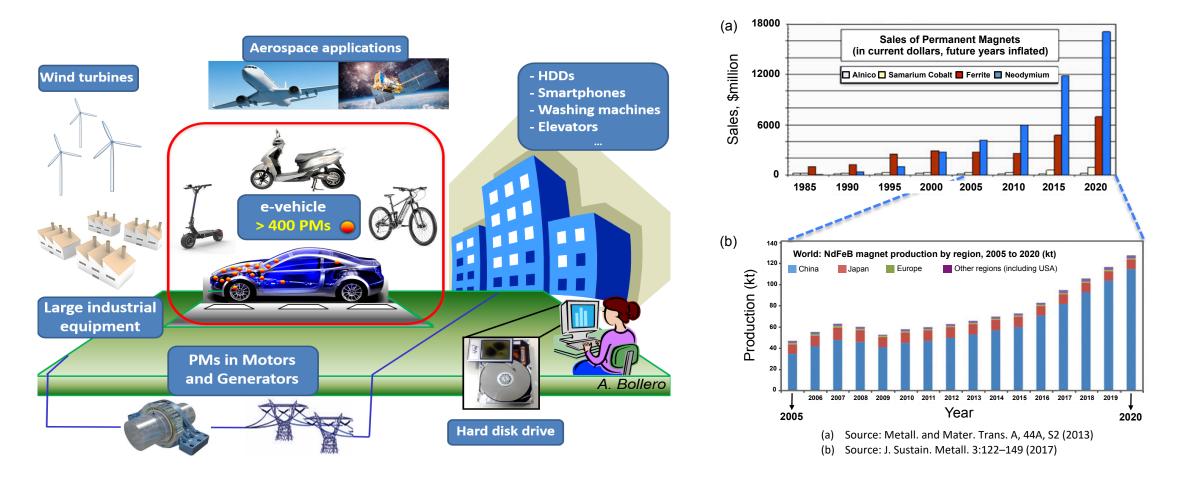
Climate action, environment, resource efficiency and raw materials

Call:

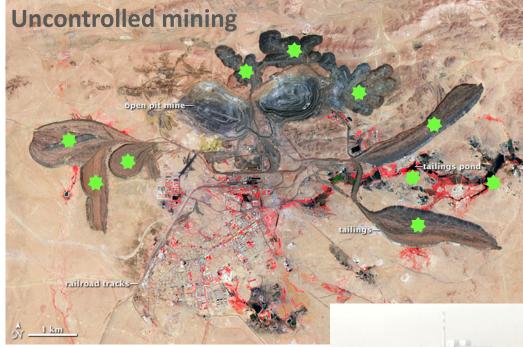
Greening the economy in line with the Sustainable Development Goals (SDGs) (H2020-SC5-2018-2019-2020)

Topic:

SC5-10-2020: Raw materials innovation actions: exploration and Earth observation in support of sustainable mining *d) Pilots on substitution of critical and scarce raw materials*



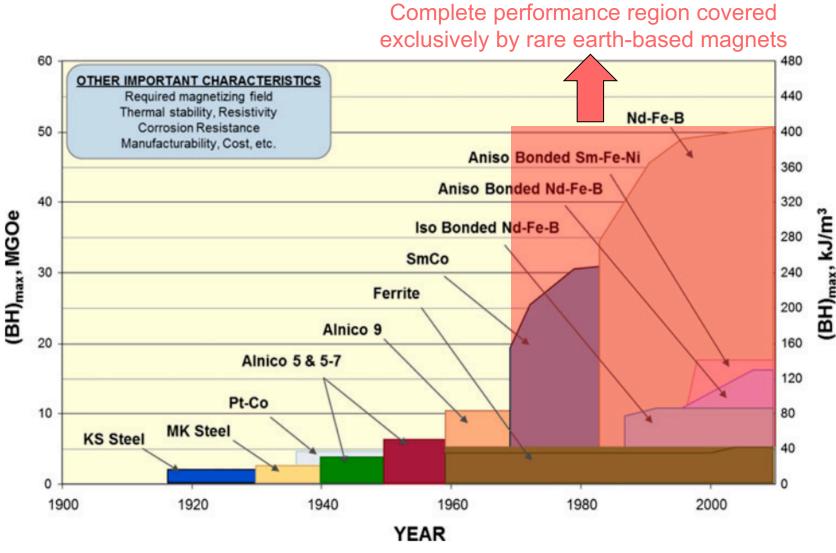
Specific challenge ↓	How <i>PASSENGER</i> addresses this specific challenge ↓
Substitution. To use substitution as a way to reduce the EU's consumption of CRMs, lower dependence on imports and reduce adverse environmental impacts.	<i>PASSENGER</i> will reduce the dependence on CRMs, specifically REEs, by piloting two previously TRL 4-5 demonstrated permanent-magnet materials: improved strontium ferrites (SrFe12O19) and manganese-aluminium-carbides (Mn-Al-C).
Scale up. To scale up promising technologies for raw-materials production or the substitution of CRMs, to demonstrate that raw materials can be produced in an innovative and sustainable way, and to ensure that research and innovation end up on the market.	<i>PASSENGER</i> will scale up two already-demonstrated technologies to produce REE-free permanent magnets as industrial prototypes for application in the e-mobility market.


PMs present in a broad spectrum of technological applications

 $\langle \rightarrow \rangle$

Problem asks for the search of alternatives to controversial REE-based PMs

Environmental impact from extraction and refinement of the rare-earth elements



Globalization means "WE": Impact on You brings Impact on Me

The historical evolution of permanent magnets shows a huge performance gap between ferrites and rare earth-based magnets (since NdFeB discovery in 1983).

Source: M.J. Kramer, W. McCallumI. A. Anderson, and S. Constantinides, JOM 64, 752 (2012).

Approaches to mitigate dependency on CRMs in PMs

Novel materials

New combination of elements to result in novel REE-free magnets

Exploring new phenomena

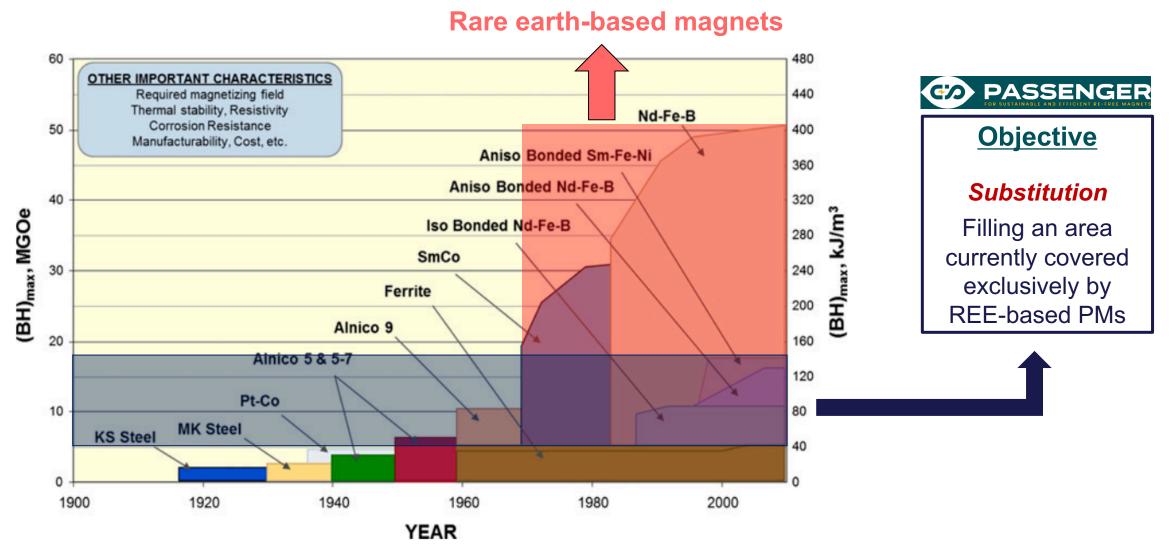
Exploring enhanced/new phenomena (e.g. *nanometer scale*) in existing alloys.

Engineering structures

Engineering nanostructures for optimized (reduced) use of CRMs.

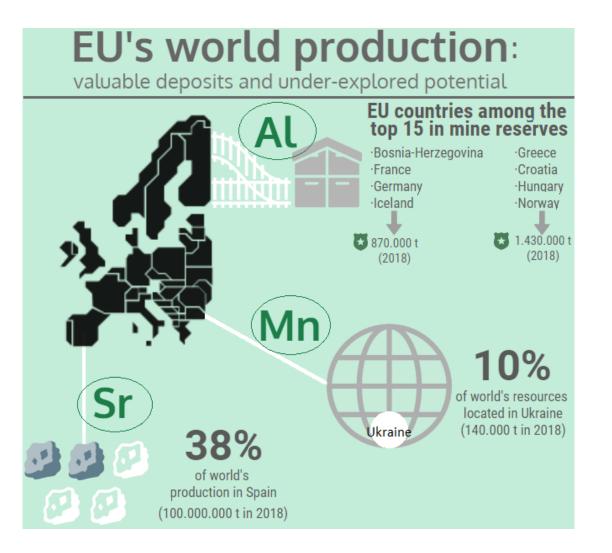
Diversification of PM materials

Efficient / selective use of the different REEbased materials according to applications.



Reuse and recycling

Increased sustainability through reuse and recycling.


Source: M.J. Kramer, W. McCallumI. A. Anderson, and S. Constantinides, JOM 64, 752 (2012).

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101003914

BLACK CYCLE 1ST WORKSHOP

Resources and processes

Abundant natural resources available
in Europe → Avoidance of external
dependency.

No need for rare earths extraction and elements refinement.

 Industrial synthesis of material precursors and magnets fabrication with a reduced energy consumption.

Standardization protocols to diminish environmental impact. Recyclability.

Specific challenge ↓	How <i>PASSENGER</i> addresses this specific challenge ↓
Substitution. To use substitution as a way to reduce the EU's consumption of CRMs, lower dependence on imports and reduce adverse environmental impacts.	<i>PASSENGER</i> will reduce the dependence on CRMs, specifically REEs, by piloting two previously TRL 4-5 demonstrated permanent-magnet materials: improved strontium ferrites (SrFe12O19) and manganese-aluminium-carbides (Mn-Al-C).
Scale up. To scale up promising technologies for raw-materials production or the substitution of CRMs, to demonstrate that raw materials can be produced in an innovative and sustainable way, and to ensure that research and innovation end up on the market.	<i>PASSENGER</i> will scale up two already-demonstrated technologies to produce REE-free permanent magnets as industrial prototypes for application in the e-mobility market.

NANOPYME: prototype

Fabrication of rotor with 32 (16x2) ferrite magnets

constructed in the frame of the ended EU FP7 "NANOPYME" project (Ref: 310516/ Coordinator: IMDEA Nanociencia).

Prototype scooter with an electric ferrite-based motor designed and

A. Bollero and E. M. Palmero, **Recent Advances in Hard Ferrite Magnets.** In: J.J. Croat and J. Ormerod (eds.) **Book: Modern Permanent Magnets.** Elsevier. ISBN: 9780323886581

SCIENCE

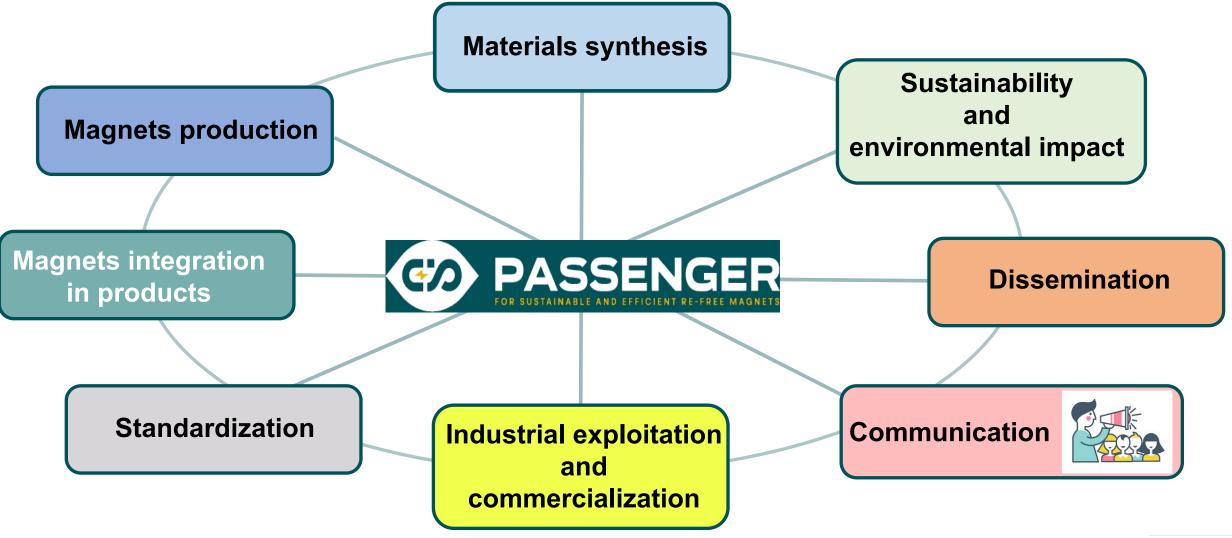
The Consortium

EXCELENCIA SEVERO OCHOA dea eit RawMaterials CRF nanociencia Connecting matters BARLOG wilo IBN GRUPPE nanomaterialia® less common metals TECHNISCHE Institut UNIVERSITÄT Jožef Stefan DARMSTADT METALPINE TIZONA Innovations KOLEKTOR MOTORS INDUSTRIE Smart Waste

Engineering srl

Expert partners involved in the different steps of the whole value chain.

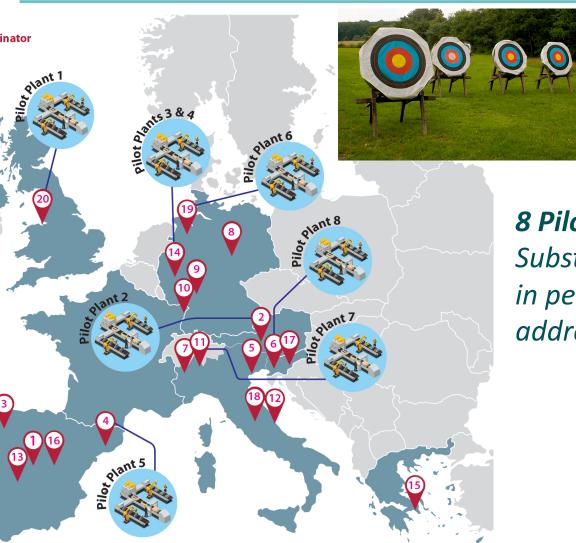
 Possibility of exploring different industrial approaches to achieve efficiency in:


- Production.
- Implementation.
- Sustainability.

Guarantee viability of the approach (environmental impact, LCA, LCC...)

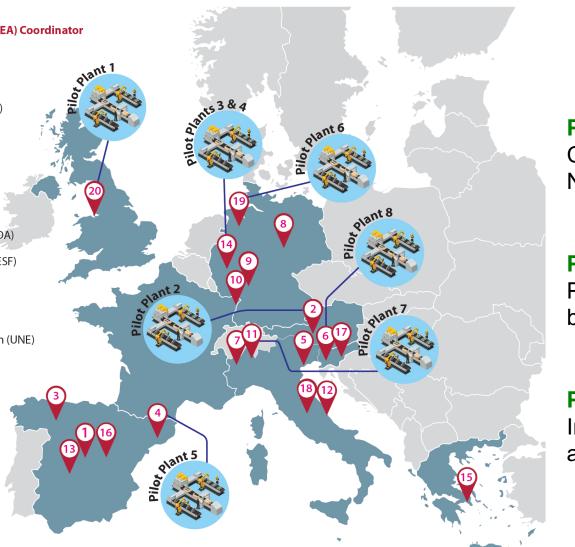
A

Connect with citizens \rightarrow Make worth the investment, effort and achievements!



The Goal

- Fundación IMDEA Nanociencia (IMDEA) Coordinator
- 2 Metalpine
- 3 Fundación ICAMCYL (ICAMCYL)
- 4 Ingenieria Magnetica Aplicada SL (IMA)
- 5 MBN Nanomaterialia SPA (MBN)
- 6 Kolektor Group (KOLEKTOR)
- 7 Centro Ricerche FIAT SCPA (CRF)
- 8 EIT Raw Materials GMBH (EIT)
- 9 Technische Universität Darmstadt (TUDA)
- **10** Fondation Europeenne de la Science (ESF)
- 11 Industrie ILPEA spa (ILPEA)
- 12 OSLV Italia S.R.L. (OSLV)
- **13** Spanish Association for standardization (UNE)
- 14 BARLOG Plastics GmbH (BARLOG)
- 15 MNLT Innovations IKE (MNLT)
- 16 Tizona motors S.L. (TIZONA)
- 17 Institut Jožef Stefan (JSI)
- **18** Smart Waste Engineering (SWE)
- 19 Wilo SE (WILO)
- 20 Less Common Metals (LCM)



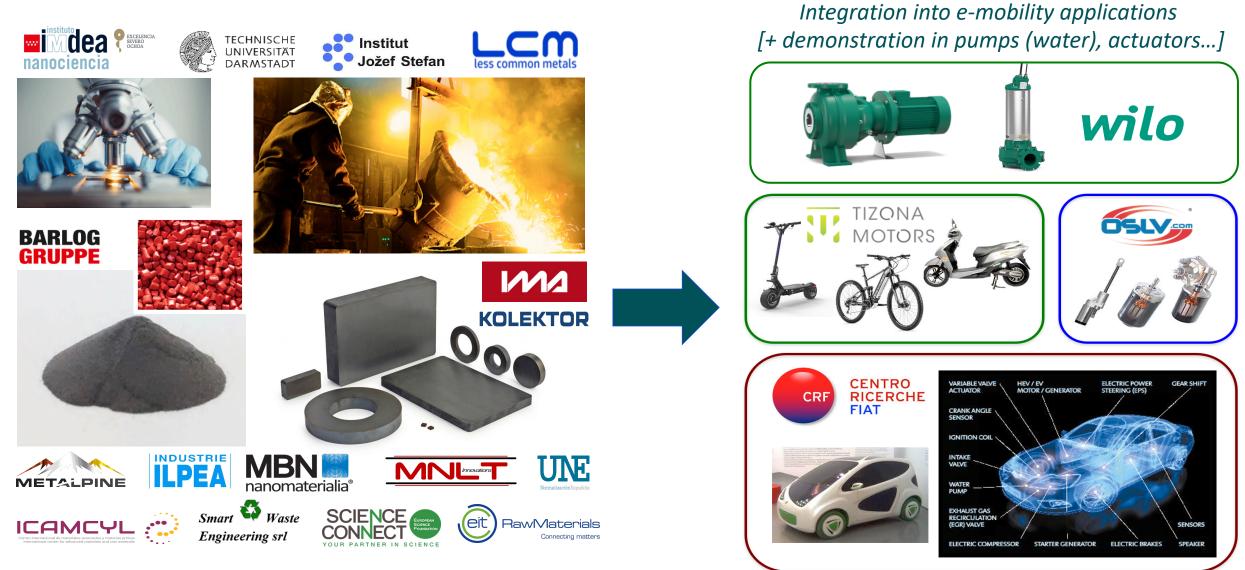
8 Pilot plants: Substitution of rare-earths in permanent magnets addressing 3 pilot actions

- Fundación IMDEA Nanociencia (IMDEA) Coordinator
- 2 Metalpine
- 3 Fundación ICAMCYL (ICAMCYL)
- 4 Ingenieria Magnetica Aplicada SL (IMA)
- 5 MBN Nanomaterialia SPA (MBN)
- 6 Kolektor Group (KOLEKTOR)
- 7 Centro Ricerche FIAT SCPA (CRF)
- 8 EIT Raw Materials GMBH (EIT)
- 9 Technische Universität Darmstadt (TUDA)
- **10** Fondation Europeenne de la Science (ESF)
- 11 Industrie ILPEA spa (ILPEA)
- 12 OSLV Italia S.R.L. (OSLV)
- **13** Spanish Association for standardization (UNE)
- 14 BARLOG Plastics GmbH (BARLOG)
- 15 MNLT Innovations IKE (MNLT)
- 16 Tizona motors S.L. (TIZONA)
- 17 Institut Jožef Stefan (JSI)
- **18** Smart Waste Engineering (SWE)
- 19 Wilo SE (WILO)
- 20 Less Common Metals (LCM)

PILOT ACTION 1 [Substitution]: Complete substitution of bonded Nd-Fe-B by Mn-Al-C magnets.

PILOT ACTION 2 [Substitution]:

Partial substitution of bonded Nd-Fe-B by improved Sr-ferrite magnets.


PILOT ACTION 3 [Integration]:

Integration and validation of Mn-Al-C and improved ferrite magnets.

The Goal: From the Lab to the Fab and to the user

Electric bikes: Excluding China, global e-bike sales are expected to grow from 3.3 million units annually to some 6.8 million units by 2025, with the majority of this growth coming from Europe. *PASSENGER* aims to substitute in its entirety the NdDyFeB magnets in e-bikes.

Electric motorbikes: Annual e-motorcycle sales is expected to reach \$6 million by 2023. *PASSENGER* aims to substitute in its entirety NdDyFeB in this sector profitting from an optimized motor design.

Electric cars: Uptake of electric vehicles in Europe is increasing fast. A vehicle may use about 400 g Nd-Fe-B PMs for **utilities and accessories** (*these numbers without considering the large use of Nd-Fe-B magnets in the driving motor*) \rightarrow annual incremental demand of 120 t NdPr oxide and Dy for every 1 million vehicles sold. Weight is an issue in e-cars and the materials considered in *PASSENGER* have a significantly lower density (about 35%) than Nd-Fe-B.

+ Integration in motor pumps and actuators as key driving sectors to open a new market for PASSENGER's magnets

Follow us!

PASSENGER website: https://passenger-project.eu/

CONTACT: passenger.project@imdea.org alberto.bollero@imdea.org

Twitter

https://twitter.com/Passenger_EU

Linkedin

https://www.linkedin.com/company/passenger-eu/

FaceBook

https://www.facebook.com/PassengerEU

